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Abstract. Directed animals on a square lattice with attractive nearest-neighbour and 
next-nearest-neighbour interactions are considered. Using an equivalence between the 
collapse problem and the directed site bond percolation problem, the bulk free energy per 
site is calculated exactly in the collapsed phase. It shows no singularity as the transition 
is approached from the collapsed side. For the three-dimensional directed animals, bulk 
free energy per site in the collapsed phase is calculated exactly if the interaction weights 
are related by an algebraic equation. 

Branched polymers in dilute solution are known to undergo a collapse transition for 
sufficiently strong attractive interaction between monomers. For small attraction 
strength (i.e. when the polymer is in a good solvent) the polymer structure is ramified 
and the mean size of a polymer with N monomers varies as N"a where v, is believed 
to be same as the exponent characterising the size of random animals. For strong 
attraction (i.e. bad solvent) the polymer collapses to a compact globular shape of size 
N'c where in d-dimensional space U, = l/d. At the transition point, the mean size 
varies as Nul, where v, is, in general different from v, and v, and we have v, > v, > v, = 
l /d.  

The structure of large-branched polymers below and above the collapse transition 
is the same as that of large percolation clusters above and below the critical percolation 
threshold. This suggests that the collapse transition may be in the same universality 
class as the percolation transition. A Flory-like argument by Family (1984) also suggests 
a similar conclusion. It is, however, not true in general. In two dimensions the exponent 
v, was determined numerically by Derrida and Herrman (1983) and their result is quite 
different from the exactly known percolation exponent vp =$. In a Potts-model 
formulation of the branched polymer problem, Coniglio (1983) found that the percola- 
tion and collapse fixed points are distinct, the fixed point describing the collapse 
transition being more stable. This would imply that the collapse transition will be 
percolation-like only for very special values of coupling constants. 

In this letter, we study the collapse transition of directed animals in two and three 
dimensions. The problem has been studied using Monte Carlo simulations by Lam 
and Duarte (1986) and Lam (1987). In this special case, we find that the collapse 
problem is equivalent to the directed percolation problem. In two dimensions, the 
bulk free energy per site is determined exactly in the collapsed phase. In three 
dimensions, the result can be generalised, provided the two-body and three-body 
coupling constants are related by an equation. 

Consider first the two-dimensional directed animals, say on a square lattice. A 
directed animal is a connected cluster of N sites (including the origin) such that a site 

0305-4470/87/ 130847 +04$02.50 0 1987 IOP Publishing Ltd L847 



L848 Letter to the Editor 

( i ,  j )  belongs to the cluster only if it is the origin or if at least one of its predecessor 
sites ( i - 1 , j )  and (i, j -  1 )  belongs to the cluster. Let niJ be the occupation number 
of the site ( i , j )  (taking values 0 and 1 ) .  For any allowed animal configuration A, we 
define the energy 

Here JI is the attractive interaction strength between nearest-neighbour sites, and J2 
is the interaction between two sites having a common predecessor. The partition 
function is then defined to be 

where the summation over A extends over all possible directed animal configurations 
of N sites. The free energy per site is f(J,, J 2 )  defined by taking the thermodynamic 
limit (Dickman and Schieve 1984, 1986) 

Consider now a directed site bond percolation process on this lattice defined as 
follows. Each bond is, independently of other bonds or sites, present with a probability 
pB. We assume that the origin is 'unblocked' and occupied and each site other than 
the origin is 'unblocked' with a probability ps (again independent of others). A site 
can be occupied only if it is unblocked and connected by an occupied bond to at least 
one of its occupied predecessors. The probability that the origin is connected to a 
finite cluster A of occupied sites in this process is 

(4) 

where nl(n2)  is the number of occupied sites with one (two) occupied predecessors, 
n3(n4) is the number of unoccupied (i.e. perimeter) sites with one (two) occupied 
precedessors and q B  = 1 -pB and qs = 1 -ps. These numbers n,, n2, n3 and n4 are not 
independent, and can be expressed in terms of three quantities N, NI, N2 where NI 
is the number of nearest-neighbour site pairs in the cluster A and N2 is the number 
of diagonal pairs having a common predecessor. Simple geometry gives (figure 1 )  

N - I  n Prob(A) = P S  P B ' ( 1  -q;ln2(l -PBpS)"3(qS+pSq28)"4 

n, = 2 N  - NI - 2  ( 5 a )  

0 

t o  

Figure I .  A directed site animal on the square lattice. The occupied sites are shown by 
full circles. Open circles and triangles denote perimeter sites with one and two occupied 
predecessors respectively. The nearest-neighbour bonds (full lines) have strength J ,  and 
diagonal bonds (broken lines) have strength J 2 .  In the cluster shown N = 16, N I  = 18, 
N2 = 8, n, = 12, n2 = 3, n, = 4 and n4 = 5 .  
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n, = N ,  - N +  1 (5b)  

n 3 =  Nl-2N2+2 ( 5 c )  

n4 = N + N2 - NI - 1 .  ( 5 d )  

The thermodynamic weight of the cluster A under the Hamiltonian H is exp(N,J1 + 
N2J2), which is the same form as in equation (4). Thus the relative weights between 
different animal configurations of size N under the Hamiltonian H are exactly the 
same as in the directed site bond percolation process if we put 

exp(J1) = (l+qB)(1 -PBPS)/(qS+PSqB) (6a) 

exp(J2) = (qS+pSqi)/(l -pBp;)’* (6b) 

In the percolation problem, the probability that the cluster containing the origin has 
precisely N sites is obtained by summing equation (4) for all configurations A contain- 
ing N sites. We thus get 

Taking logarithms, and the thermodynamic limit N += CO, we get 

For pB and p s  sufficiently large (above percolation threshold) it is known that the 
probability of large finite clusters of N sites decreases as exp( for N tending 
to infinity (Kunz and Suillard 1978, Stauffer 1979). The second term on the right-hand 
side of equation (8) is thus zero, and we get in the collapsed phase 

where p s  and pB can be determined in terms of J1, J2 from equation (6). The right-hand 
side of equation (9) is a smooth function of p s  and pB, and remains so as p s  or pB are 
decreased below the critical percolation threshold. Thus the bulk free energy per site 
f(J1, J,) shows no singularity as the transition is approached from the collapsed phase 
side. The onset of the transition is signalled by the vanishing of the surface free energy 
term (the term proportional to N1-’ld in log 2). The average density of occupied sites 
in the bulk equals Pm(ps,pB), the probability that a randomly chosen site in the 
corresponding percolation problem belongs to the infinite cluster. 

The variables p s  and pB may be eliminated from equation (9), and the result 
expressed in terms of Jl and 5, explicitly. The explicit expression is rather messy, and 
is omitted here. It simplifies considerably in special cases. 

(i)  J 2 = 0 .  This case corresponds to a pure bond percolation process with p s =  1, 
qB = (e’, - 1 ) - ’  and we get 

f ( J l ,  J2 = 0) = log(e’1- 2/( eJl - 1)*).  (10) 
The free energy is non-singular for all exp(J,)>2. But the critical threshold for the 
bond percolation problems is known from numerical studies (Kinzel and Yeomans 
1981) to be approximately q B C  = 0.3553, which corresponds to exp(JIc) = 3.814. This 
agrees well with the Monte Carlo simulations of Lam and Duarte (1986). 
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Equation (10) may be expanded in powers of e-’). The radius of convergence of 
the resulting series is clearly i, which is not equal to the critical value. This behaviour 
is quite unexpected (see, for example, Dickman and Schieve 1984). 

(ii) J ,  = 0. This corresponds to a directed site percolation process with pB = 1, 
qs=exp(-J,). The free energy per site is easily seen to be 

(11) 
which is again valued only for e-’2 less than its critical value e-’zc. 

a directed animal on the cubic lattice with Hamiltonian given by 

where Jz and J3 are interaction strengths, and N2 and N3 are the number of sites having 
two and three occupied predecessors respectively. The thermodynamic weight of this 
animal in the partition function is exp( N2Jz + N3J3).  

For a directed bond percolation process on this lattice having bond concentration 
p, it is easy to check that the probability of occurrence of a cluster of N sites having 
Nz sites with two predecessors and N3 sites with three predecessors is 

The two problems are thus equivalent if 

f( J ,  = 0 ,  J 2 )  = log[ e-’2( 1 - e-’Z 11 

The arguments given above can be easily generalised to three dimensions. Consider 

H = -J2 Nz - J3 N3 ( 1 2 )  

(q-q3)N2(i -q31N3. (13) 
3 ( pq 2)  N - N 2  - N 3  - 1 

( 1 + q )/ q = e’> 
(1+q+q2)/q2=e’3, 

Eliminating q, we get the condition for the equivalence to hold is 

and the free energy per site in the collapsed phase is 
(15) e’3 = e2’2 - e’2 + 1 

f =  log(pq2) =log(e’2-2/(e’2- 1 ) 3 ) .  (16) 
Equation (15) is a special case of the disorder condition or !he cellular automation 

condition. For values of coupling constants satisfying this condition it is found that 
the partition function can be evaluated quite simply, and is an algebraic function of 
the Boltzmann weights. For a recent review, and earlier references on this topic, the 
reader is referred to a recent paper by Rujan (1987). 

I thank M Barma for discussions and P M Lam for correspondence and for communicat- 
ing his results prior to publication. 
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